The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity.
نویسندگان
چکیده
Pumpkin leaves grown under high light (500-700 micromol of photons m-2.s-1) were illuminated under photon flux densities ranging from 6.5 to 1500 micromol.m-2.s-1 in the presence of lincomycin, an inhibitor of chloroplast protein synthesis. The illumination at all light intensities caused photoinhibition, measured as a decrease in the ratio of variable to maximum fluorescence. Loss of photosystem II (PSII) electron transfer activity correlated with the decrease in the fluorescence ratio. The rate constant of photoinhibition, determined from first-order fits, was directly proportional to photon flux density at all light intensities studied. The fluorescence ratio did not decrease if the leaves were illuminated in low light in the absence of lincomycin or incubated in darkness in the presence of lincomycin. The constancy of the quantum yield of photoinhibition under different photon flux densities strongly suggests that photoinhibition in vivo occurs by one dominant mechanism under all light intensities. This mechanism probably is not the acceptor side mechanism characterized in the anaerobic case in vitro. Furthermore, there was an excellent correlation between the loss of PSII activity and the loss of the D1 protein from thylakoid membranes under low light. At low light, photoinhibition occurs so slowly that inactive PSII centers with the D1 protein waiting to be degraded do not accumulate. The kinetic agreement between D1 protein degradation and the inactivation of PSII indicates that the turnover of the D1 protein depends on photoinhibition under both low and high light.
منابع مشابه
Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.
Photoinhibition of photosystem II was studied in vivo with bean (Phaseolus vulgaris) plants grown in the presence of 0.3 (control), 4, or 15 microM Cu(2+). Although photoinhibition, measured in the presence of lincomycin to block concurrent recovery, is faster in leaves of Cu(2+)-treated plants than in control leaves, thylakoids isolated from Cu-treated plants did not show high sensitivity to p...
متن کاملShort flashes and continuous light have similar photoinhibitory efficiency in intact leaves
Lincomycin-treated pumpkin leaves were illuminated with either continuous light or saturating single-turnover xenon flashes to study the dependence of photoinactivation of photosystem II (PSII) on the mode of delivery of light. The flash energy and the time interval between the flashes were varied between the experiments, and photoinactivation was measured with oxygen evolution and the ratio of...
متن کاملModerate Photoinhibition of Photosystem II Protects Photosystem I from Photodamage at Chilling Stress in Tobacco Leaves
It has been indicated that photosystem I (PSI) is susceptible to chilling-light stress in tobacco leaves, but the effect of growth light intensity on chilling-induced PSI photoinhibition in tobacco is unclear. We examined the effects of chilling temperature (4°C) associated with moderate light intensity (300 μmol photons m(-2) s(-1)) on the activities of PSI and photosystem II (PSII) in leaves ...
متن کاملIncrease in the quantum yield of photoinhibition contributes to copper toxicity in vivo
The effect of copper on photoinhibition of photosystem II in vivo was studied in bean (Phaseolus vulgaris L. cv Dufrix). The plants were grown hydroponically in the presence of various concentrations of Cu2+ ranging from the optimum 0.3 &mgr;m (control) to 15 &mgr;m. The copper concentration of leaves varied according to the nutrient medium from a control value of 13 mg kg-1 dry weight to 76 mg...
متن کاملContributions of visible and ultraviolet parts of sunlight to photoinhibition.
Photoinhibition is light-induced inactivation of PSII, and action spectrum measurements have shown that UV light causes photoinhibition much more efficiently than visible light. In the present study, we quantified the contribution of the UV part of sunlight in photoinhibition of PSII in leaves. Greenhouse-grown pumpkin leaves were pretreated with lincomycin to block the repair of photoinhibited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 5 شماره
صفحات -
تاریخ انتشار 1996